(36) Liu, J.; Lu, L.; Wood, D.; Lin, S. “New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry” ACS Cent. Sci. 2020. DOI: 10.1021/acscentsci.0c00549 [html]

(35) Song, L.; Fu, N.; Ernst, B. G.; Lee, W. H.; Frederick, M. O.; DiStasio, R. A. Jr.; Lin, S. “Dual Electrocatalysis Enables Enantioselective Hydrocyanation of Conjugated Alkenes” Nat. Chem. 2020. DOI: 10.1038/s41557-020-0469-5  [html] [open full-text access]

(34) Nelson, H.; Siu. J.C.; Saha, A.; Cascio, D.; Wu, S-B.; Lu, C.; Rodriguez, J. A.; Houk, K. N.; Lin, S. “Isolation and X-ray Crystal Structure of an Electrogenerated TEMPO–N3 Charge-Transfer Complex” Chem Rxiv Preprint. 2020. DOI: 10.26434/chemrxiv.12102054.v2 [html]

(33) Siu, J. C.; Fu, N.; Lin, S. “Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction DiscoveryAcc. Chem. Res. 2020, 53, 547-560. DOI: 10.1021/acs.accounts.9b00529 [html]

(32) Novaes, L. F. T.; Lin, S. “Electrocatalytic Diazidation of AlkenesTrends in Chem. 2020, 2, 84-85. DOI: 10.1016/j.trechm.2019.10.005 [html]

(31) Zhang, W.; Carpenter, K.; Lin, S. “Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols” Angew. Chem., Int. Ed. 2020, 59, 409-417. DOI: 10.1002/ange.201910300 [html]

(30) Kim, H.; Kim, H.; Lambert, T.; Lin, S. “Reductive Electrophotocatalysis: Merging Electricity and Light to Achieve Extreme Reduction Potentials” JACS 2020, 142, 2087-2092. DOI: 10.1021/jacs.9b10678 [html] For the ChemRxiv preprint version, see [html

(29) McCallum, T.; Wu, X.; Lin, S. “Recent Advances in Titanium Radical Redox Catalysis” JOC 2019, 84, 14369-14380. DOI: 10.1021/acs.joc.9b02465 [html


(28) Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. “New Bisoxazoline Ligands Enable Enantioselective Electrocatalytic Cyanofunctionalization of VinylarenesJACS 2019, 141, 14480-14485. DOI: 10.1021/jacs.9b03296 [html

(27) Lu, L.; Fu, N.; Lin, S. “Three-Component Chlorophosphinoylation of Alkenes via Anodically Coupled Electrolysis” Synlett 2019, 30, 1199-1203. DOI: 10.1055/s-0039-1689934  [html

An invited contribution to the Cluster Electrochemical Synthesis and Catalysis

(26) Ye, K-Y.; McCallum, T.; Lin, S. “Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic AlcoholsJ. Am. Chem. Soc. 2019, 141, 9548-9554. DOI: 10.1021/jacs.9b04993  [html]

(25) Siu, J. C.; Parry, J. B.; Lin, S. “Aminoxyl-Catalyzed Electrochemical Diazidation of Alkenes Mediated by a Metastable Charge-Transfer Complex” J. Am. Chem. Soc. 2019, 141, 2825-2831. DOI: 10.1021/jacs.8b13192  [html]

(24) Fu, N.; Shen, Y.; Allen, A.R.; Song, L.; Ozaki, A.; Lin, S. “Mn-catalyzed Electrochemical Chloroalkylation of Alkenes” ACS Catal2019, 9, 746-754. DOI: 10.1021/acscatal.8b03209 [html]

(23) Wu, X.; Hao, W.; Ye, K-Y.; Jiang, B.; Pombar, G.; Song, Z.; Lin, S. “Ti-Catalyzed Radical Alkylation of Secondary and Tertiary Alkyl Chlorides Using Michael Acceptors” J. Am. Chem. Soc. 2018, 140, 14836-14843. DOI: 10.1021/jacs.8b08605  [html]

(22) Siu, J. C.; Sauer, G. S.; Saha, A.; Macey, R. L.; Fu, N.; Chauvirie, T.; Lancaster, K. L.; Lin, S. “Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO–N3Charge-Transfer Complex.” J. Am. Chem. Soc. 2018, 40, 12511-12520. DOI: 10.1021/jacs.8b06744  [html]

(21) Fu, N.; Sauer, G. S.; Lin, S. “A general, electrocatalytic approach to the synthesis of vicinal diamines.” Nat. Protoc. 2018, 13, 1725-1743. DOI: 10.1038/s41596-018-0010-0 [PDF][HTML]

(20)   Ye, K-Y.; Song, Z.; Sauer, G. S.; Harenberg, J. H.; Fu, N.; Lin, S. “Synthesis of Chlorotrifluoromethylated Pyrrolidines by Electrocatalytic Radical Ene‐Yne Cyclization.” Chem. Eur. J. 2018, 24, 12274-12279. DOI:10.1002/chem.201802167 (Young Chemists Special Issue). [html]

(19)   Sauer, G. S.; Lin, S. “An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes.ACS Catal. 2018, 8, 5175-5187. DOI: 10.1021/acscatal.8b01069 (Invited Perspective). [html]

(18)    Hao, W.; Harenberg, J. H.; Wu, X.; Macmillan, S. N.; Lin, S. “Diastereo- and Enantioselective Formal [3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox Relay” J. Am. Chem. Soc. 2018, 140, 3514–3517. DOI: 10.1021/jacs.7b13710 [html]

(17)    Ye, K.; Pombar, G.; Fu, N.; Sauer, G. S.; Keresztes, I.; Lin, S. “Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes” J. Am. Chem. Soc. 2018, 140, 2438–2441. DOI: 10.1021/jacs.7b13387 [html]

(16)   Peterson, B. M.; Lin, S.; Fors, B.P.  “Electrochemically Controlled Cationic Polymerization of Vinyl Ethers” J. Am. Chem. Soc. 2018, 140, 2076–2079. DOI: 10.1021/jacs.8b00173 [html]

(15)   Parry, J. B .; Fu, N.; Lin, S. “Electrocatalytic Difunctionalization of Olefins as a General Approach to the Synthesis of Vicinal Diamines.”, Synlett 2018, 29, 257-265 , DOI: 10.1055/s-0036-1591749 (Invited Account). [html]

(14)    Fu, N.; Sauer, G. S.; Lin, S. “Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources.”, J. Am. Chem. Soc. 2017, 139, 15548-15553, DOI: 10.1021/jacs.7b09388. [html]

(13)    Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S. “Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-Acylaziridines and Alkenes”, J. Am. Chem. Soc. 2017, 139, 12141-12144. DOI: 10.1021/jacs.7b06723. [html]
Highlighted in SynForm

(12)    Fu, N.; Sauer, G. S.; Saha, A.; Loo, A; Lin, S. “Metal-catalyzed electrochemical diazidation of alkenes”, Science 2017, 357, 575-579. [Abstract][Full Text]
Highlighted in Chemical and Engineering News,Cornell Chronicle, and SynForm

Publications Before Cornell:

(11)     Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.; Zhao, Y.; Chang, C. J.; Yaghi, O. M. “Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction”; J. Am. Chem. Soc. 2018, 139, 1116–1122. (co-first author) [html]

(10)     Kennedy, C. R.; Lin, S.; Jacobsen, E. N. “The cation–π interactions in small-molecule catalysis”, Angew. Chem., Int. Ed. 2016, 55, 12596–12624. (co-first author) [html]

(9)     Cao, Z.; Kim, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; Yang, P.; Chang, C. J. “A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction”, J. Am. Chem. Soc. 2016, 138, 8120–8125. [html]

(8)     Kornienko, N.; Zhao, Y.; Kley, C.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. “Metal-organic frameworks for electrocatalytic reduction of carbon dioxide”, J. Am. Chem. Soc. 2015137, 14129–14135. [html]

(7)     Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. “Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water”, Science 2015, 349, 1208–1213. (co-first author) [html]

(6)     Rogers, C.; Chen, C.; Pedramrazi, Z.; Omrani, A. A.; Tsai, H.-Z.; Jung, H. S.; Lin, S.; Crommie, M. F.; Fischer, F. R. “Closing the nanographene gap: surface-assisted synthesis of peripentacene from 6,6’-bipentacene precursors”, Angew. Chem., Int. Ed. 201554, 15143–15146. [html]

(5)     Zhang, H.; Lin, S.; Jacobsen, E. N. “Enantioselective selenocyclization via dynamic kinetic resolution of seleniranium ions by hydrogen-bond donor catalysts”, J. Am. Chem. Soc. 2014, 136, 16485–16488. [html]

(4)     Lin, S.; Jacobsen, E. N. “Thiourea-catalysed ring opening of episulfonium ions with indole derivatives by means of stabilizing non-covalent interactions”, Nature Chem. 2012, 4, 817–824. [html]

(3)     Knowles, R. R.; Lin, S.; Jacobsen, E. N. “Enantioselective thiourea-catalyzed polycyclizations”, J. Am. Chem. Soc. 2010, 132, 5030–5032. [html]

(2)     Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. “Cross dehydrogenative arylation (CDA) of a benzylic C–H bond with arenes by iron catalysis”, Angew. Chem., Int. Ed. 2009, 48, 3817–3820. [html]

(1)     Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.H.; Shi, Z.-J. “Intra/Intermolecular direct allylic alkylation via Pd(II)-catalyzed allylic C–H activation”, J. Am. Chem. Soc. 2008, 130, 12901–12903. [html]