HTe‾Chem: Overview and Design
Organic electrochemistry has emerged as an enabling and sustainable technology in modern organic synthesis. HTe‾Chem offers a standardized platform for high-throughput electrochemical experimentation in a compact 24-well plate microscale reactor compatible with existing HTE infrastructure such as multichannel pipettors and reagent handling robotics. HTe‾Chem is designed to enable the rapid evaluation of a broad array of electrochemical reaction parameters to accelerate reaction optimization, reaction discovery, and chemical library synthesis. The information for purchase of this platform is provided below.
The overall profile of HTe‾Chem is compact, with the standalone reactor measuring a mere 3×2”. HTe‾Chem features a 4×6 well array sized to hold 8×30 mm glass vials. The reactor block has an insert for a temperature probe and can be heated or cooled using common laboratory temperature-control systems; it is also compatible with both magnetic stirring. Finally, the base allows for illumination of the vials with commercial HTE photochemistry equipment through the bottom of the reactor.
Tools for Reaction Discovery and Optimization
Read all about HTe‾Chem here: Rein, J.; Annand, J. R.; Wismer, M. K.; Fu, J.; Siu, J. C.; Klapars, A; Strotman, N. A.; Kalyani, D.*; Lehnherr, D.*; Lin, S.* “Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor.” ACS Cent. Sci. 2021, 7, 1347–1355 (open access)
A review on high-throughput electrochemistry: Rein, J.; Lin, S.*; Kalyani, D.*; Lehnherr, D.* High-Throughput Experimentation for Electrochemistry. In The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis; Emmert, M. H., Jouffroy, M., Leitch, D. C., Eds; ACS Symposium Series, Vol. 1419; American Chemical Society, 2022; pp 167–187. [html]
Representative reaction optimization efforts using HTe‾Chem are shown above. In addition to standard reaction parameters, the HTe‾Chem platform offers the ability to screen electrochemical parameters such as electrode material, current, potential, and reaction time. Heat map visualizations for two screening plates are shown above.
Recent publications showcasing application of HTe‾Chem
Novaes, L. F. T.; Ho, J. S. K.; Mao, K.; Liu, K.; Tanwar, M.; Neurock, M.; Villemure, E.; Terrett, J. A.; Lin, S. Exploring Electrochemical C(sp3)–H Oxidation for the Late-Stage Methylation of Complex Molecules. J. Am. Chem. Soc. 2022, 144, 1187–1197.
Ruccolo, S.; Brito, G.; Christensen, M.; Itoh, T.; Mattern, K.; Stone, K.; Strotman, N. A.; Sun, A. C. Electrochemical Recycling of Adenosine Triphosphate in Biocatalytic Reaction Cascades. J. Am. Chem. Soc. 2022, 144, 22582–22588.
Bottecchia, C.; Lehnherr, D.; Lévesque, F.; Reibarkh, M.; Ji, Y.; Rodrigues, V. L.; Wang, H.; Lam, Y.-h.; Vickery, T. P.; Armstrong, B. M.; Mattern, K. A.; Stone, K.; Wismer, M. K.; Singh, A. N.; Regalado, E. L.; Maloney, K. M.; Strotman, N. A. Kilo-Scale Electrochemical Oxidation of a Thioether to a Sulfone: A Workflow for Scaling up Electrosynthesis. Org. Process Res. Dev. 2022, 26, 2423–2437.
Fu, J.; Lundy, W.; Chowdhury, R.; Twitty, J. C.; Dinh, L. P.; Sampson, J.; Lam, Y.-h.; Sevov, C. S.; Watson, M. P.; Kalyani, D. Nickel-Catalyzed Electroreductive Coupling of Alkylpyridinium Salts and Aryl Halides. ACS Catal. 2023, 13, 9336–9345.
Try HTe‾Chem for Yourself
We’ve partnered with Merck and Analytical Sales to bring HTe‾Chem to the broader electrochemical community.
Try HTe‾Chem for yourself here: Analytical Sales
Assembly instructions and user manual: Manual
HTe‾Chem Video Tutorial